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Fe in the solar corona; EUV  20 – 35 nm

Fe       to Fe           A matter of temperature and density 

Properties of laboratory light sources  
        - Laser-produced plasma 
        - Tokamak 
        - Electron beam ion trap (EBIT)
        - Foil-excited ion beams (beam-foil spectroscopy) 
        - Heavy-ion storage ring

Examples of individual techniques or data combinations 
Time integrated vs. time resolved data
              Tokamak + LPP + BFS
              BFS prompt / delayed spectra
              Lifetime measurements (BFS, storage ring, EBIT) 
  

Promising approaches for Fe  

             BFS               Spectra of elemental purity 
              BFS               Delayed spectra 
              Storage ring  E1-forbidden decay rates 
              EBIT              High-resolution survey spectra 

                                   Time characteristics? 

8+ 14+



Atomic level lifetime   t  = 1/S(Aki) 

Transition probability Aki 
Multipole order E1, M1, E2, M2, E3, M3 

Resonance lines, high nuclear charge Z: 
     femtosecond lifetimes

E1-forbidden lines, not so high charge states: 
     millisecond lifetimes 

Ultrahigh vacuum: Collision rates of order 1/s 

Level populations (line ratios) depend on excitation and 
deexcitation: Density diagnostic 

Measure radiative decay rates of long-lived levels 

Optical depth depends on the A-value 

Extreme cases in astrophysics: All lines in absorption, 
except for those from extremely long lived levels



Density 	 	
Solid / Laser-produced plasma        10     cm     atoms
Gas (1 bar)                                    3 10     cm     atoms
Tokamak                                          10     cm     atoms 
                                                         10     cm     electrons 
EBIT                                                 10     cm     atoms 
                                                         10     cm     electrons 
Solar corona                                     10        cm    electrons 
Planetary nebulae                            10        cm    electrons

Properties of laboratory light sources: temperature and density
- Laser-produced plasma 
- Tokamak
- Electron beam ion trap (EBIT)
- Foil-excited ion beams (beam-foil spectroscopy) 
- Heavy-ion storage ring
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Beam-foil spectroscopy
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Beam-foil spectra
recorded at the foil (prompt spectra) 
are very line-rich 
(excitation under high density conditions). 

Delayed spectra 
much more resemble the spectra obtained 
of the solar corona 
(low density environment). The lines 
represent intercombination transitions.
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Problem:  Long-lived levels  
                     ==> little signal per time interval

Beam-foil spectroscopy
Observation at the foil: The spectrum is 
dominated by decays of short-lived levels
Delayed observation: Much fewer lines, 
almost no background
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Beam-foil spectroscopy
Observation at the foil: The spectrum is 
dominated by decays of short-lived levels
Delayed observation: Much fewer lines, 
almost no background



Mg Al Si

Fe FeFe

The intercombination lines in Fe XIII and Fe XIV were recognized in 
beam-foil spectra on the basis of unidentified solar corona observations. 
The solar data had been recorded with ten times better resolution and 
accuracy, but it took BFS to tell the element and note the upper level longevity.



Beam-foil spectra of Fe 
top: at the foil (prompt)
middle: delayed by about 1 ns
bottom: delayed by about 10 ns

At the time of measurement, and for years after, 
even the strongest lines in each of the spectra 
remained unidentified. 

By now we know that in the bottom spectrum, 
most lines are from Fe X and Fe XI. The 
strongest lines are from levels with lifetimes in 
the range 10 - 60 ns. The strongest lines in the 
solar corona (in this range) have upper levels of 
lifetimes closer to 600 ns.
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Beam-foil spectroscopy

The ion beam energy determines the average 
charge state reached. Lines from particular charge 
state ions can thus be enhanced or suppressed. 

The delayed spectra shown here were recorded 
during a search for specific Fe IX (Ar-like, not all of 
them found yet) and Fe XIII (Si-like, successful 
search) lines. 
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The ion beam energy defines the 
charge state distribution after the 
ion-foil interaction.  

Systematic variation of the ion 
beam energy can help to 
maximize individual spectra and to 
identify the charge state of origin.
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picture credit: M. Grieser

Heavy-ion storage ring TSR at Heidelberg                Circumference 55 m    

from 12 MV tandem accelerator

The ring is mostly used for atomic physics. 



Channeltrons

+
-

Beam profile
    monitor

LiF filter

 Heavy-ion 
storage ring

Injector

Photomultiplier

Mirror+
-

Beam profile
    monitor

Beam current 
monitor

Detector of visible / 
near UV / UV light

Detection of 
VUV / EUV light

Passive atomic lifetime measurements at TSR Heidelberg

Atomic lifetime measurements at TSR have reached 
      high accuracy: as little as 0.14% uncertainty.
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The agreement of 
experiment and theory, 
achieved after so many 
years, is splendid - but 
not perfect. 
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L J Curtis has derived a mixing-
angle formalism that 
interconnects resonance and 
intercombination line strengths 
on the basis of spectroscopic 
data. 
The heavy-ion storage ring 
lifetime results on Be-like ions 
of B through O are internally 
consistent, but do not agree 
with the prescribed trend.
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The line intensities in the ground 
configurations of N- and P-like ions 
serve as temperature diagnostics in 
astrophysics. 

Measurement of M1 and E2 transition probabilities in the 
ground configuration of ions that are of astrophysical interest

Very few calculations predict all four level lifetimes in P-like ions 
                     close to the experimental findings.
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The predicted M1 and E2 transition rates in the literature or on the web 
(including the NIST data base) are not all as bad as in this case. The 
problem is how to find out which calculational results are good, and one 
finds out - by experiment ...

Isoelectronic trends can be used to ascertain the consistency of data sets.

Biemont 2001

EBIT Experiment

Biemont & 
Hansen 1985
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The measurements at the heavy-ion storage ring 
TSR and at the LLNL EBIT 
are in excellent agreement with relativistic theory
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n=2 M1 transition between the fine 
structure levels of the ground state. 
Predicted line strength S = 4/3. 

EST Electrostatic ion trap 
        (Kingdon trap) 
TSR Heavy ion storage ring 
        at Heidelberg
EBIT Electron beam ion traps 
       at NIST Gaithersburg, 
       Livermore, and Heidelberg
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The "green iron line" decay curve 
as seen in the LLNL EBIT
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The "green iron line" in the solar corona has 
found plenty of interest
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In Ar-like Kr ions, two lifetimes have 
been measured of levels with major M2 
decay branches. 

In Ar-like Fe IX, several of the "slow" 
ground state transitions are still being 
sought in terrestrial light sources.

1

2

0

3s 3p2 6

0

2
M1

53s2 3p 3d

4

3

2

Ar - like Fe 8+

1S 3P D1 3F FP 3 11
D

400 000

550 000

500 000

450 000

E / cm-1

           0

600 000

1

1 3

3
2M1

M1
M1

M2

E1

E1

E1

M2

M2



T / 10   cm3 -1

700

100

200

300

400

500

600

0

0J 4321 5

3s  3p 

3s  3p  3d

3s 3p 

2 4

5

2 3

Fe XI
Many ions have a few levels of 
particularly high J that cannot 
easily decay (at least not by E1 
transitions). 
These levels act as population 
traps and are important for 
charge state distributions.
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It is easy to reach any charge state of ions 
in an electron beam ion trap, by adjusting 
the electron beam energy. 

In fact, it is too easy to reach any low 
charge state - there is little selectivity. 
EBIT does better with higher charge states.



In the electron beam ion trap 
(EBIT), the electron beam energy 
determines the highest charge 
state that can be reached. 

Systematic observations of this 
kind have been done at Livermore 
in support of Chandra and 
XMM/Newton data evaluation.

Sample spectra taken from 
Lepson et al., Ap. J. 578, 648 (2002).
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Grazing incidence flat-field spectrograph 
at Livermore

Multichannel detection is a key element for precision spectroscopy. 

This instrument provides the highest spectral resolution 
  of any EUV equipment at any electron beam ion trap.
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EUV spectra of oxygen and 
xenon recorded with 
a flat-field spectrograph 
at the LLNL EBIT

Many EUV spectra can be calibrated with the well 
known spectral line series of H- and He-like ions.

The decays of the lowest excited levels in �
Ni-like Xe ions have been identified and �
the wavelengths measured.
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XRS Microcalorimeter built at 
Goddard Space Flight Center 
for Astro-E / Astro-E2 spacecrafts

Covers X-ray energy range 
                         300 eV to 20 keV 
      with 6 eV line width at low E
32 pixels of 0.6 mm x 0.6 mm each
Working temperature about 60 mK

X-ray crystal spectrometers offer high spectral resolution, 
                      but suffer from low efficiency

Microcalorimeters feature a poorer resolution than 
crystal spectrometers, but are much superior to solid 
state diodes in low-energy access and in resolution.
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Each signal pulse is time-
stamped; the data can be 
sorted by X-ray energy or 
time within the trap cycle.

Time resolved spectra reflect 
level population dynamics.
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When the electron beam is switched 
off, delayed photons arise from long-
lived excited levels or from charge 
exchange (CX).

In (near) Ni-like Xe, there is only 
one level with a long (millisecond 
range) lifetime.

E TI
AL B

20 Years of

LIVERMORE

since 
1986

Spectroscopy



1

10

100

0 10 20 30 40 50 60 70 80

Xe 

Counts (log)

Time (ms)

Decay curve 
extracted from the 
XRS microcalorimeter data 
at the position of the 
Xe XXVII M3 decay

Apparent lifetime 
                        11.0±0.5 ms

Microcalorimeter data of 
about one week total run time

This is the first atomic lifetime 
measurement using a 
microcalorimeter at an 
electron beam ion trap.
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Results of LLNL EBIT 
lifetime measurements on 
M3 decays in Ni-like ions 
in comparison to theory 
(all neglecting any mixing 
due to hyperfine structure)

Very few calculations cover the 
magnetic octupole (M3) 
decays.

A shorter lifetime than 
predicted makes the ion less 
sensitive to density effects.
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Soft-X-ray signal of Xe at SuperEBIT
The even isotope Xe132 has no hyperfine structure. 
It features a single-component M3 radiative decay 
(and a tail from charge exchange (CX) processes). 
Natural Xe has about equal parts of odd and even 
isotopes and a more complex decay curve.
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a)  The spectroscopy of Fe (and whatever) will be superb from the corona, 
but the problem of elemental identification has to be taken care of on the ground. 

There is a historic backlog of spectroscopic misidentifications, because not 
enough good laboratory data were available 40 years ago. 

b) Most terrestrial light sources work well with short-lived levels, 
but those long-lived ones in the corona have to be confirmed. 
This takes a low density apparatus like EBIT. 

c) The identification of long-lived levels in the lab takes some time resolution. 
Time-resolved spectra can harbour surprises. Consider the example of the 
metastable level in Ni-like Xe, that only recently has been explicitly left out 
of an extensive calculation. 
Microcalorimeter data on Xe demonstrate how the spectrum dynamics 
depend on a long lived level. 
In the soft part of the EUV, a different device will be needed, for example 
a microchannel plate-based detector (MCP).

Now that Hinode / EIS is orbiting, 
is there anything left to be done in the laboratory?



Working ranges
Beam-foil spectroscopy : picosecond to hundred nanoseconds
Electron beam ion trap  : femtosecond and 
                                        microsecond to hundred milliseconds 
Heavy-ion storage ring  : millisecond to dozens of seconds 

Atomic lifetimes (E1-forbidden decays) are of interest in 
 - astrophysics (solar corona, planetary nebulae, AGN, etc.)
 - plasma physics (tokamak, spheromak, divertor)

EBIT experiments offer high spectroscopic accuracy
Beam-foil data guarantee isotopic purity, 
 	reasonable charge state discrimination
200 - 350 Å range: Beam-foil data on Fe are available, 
 	 	 	 	EBIT  data may become available in a few years 
Heavy-ion storage ring lifetime experiments are in progress

Laboratory work on the EUV spectrum of Fe: 
Needs elemental purity, add time resolution


